Jumat, 22 Juli 2016

KECERDASAN BUATAN PADA GAME


Pengertian Kecerdasan Buatan
            Kecerdasan buatan (bahasa Inggris: Artificial Intelligence atau AI) didefinisikan sebagai kecerdasan yang ditunjukkan oleh suatu entitas buatan. Sistem seperti ini umumnya dianggap komputer. Kecerdasan diciptakan dan dimasukkan ke dalam suatu mesin (komputer) agar dapat melakukan pekerjaan seperti yang dapat dilakukan manusia. Beberapa macam bidang yang menggunakan kecerdasan buatan antara lain sistem pakar, permainan komputer (games), logika fuzzy, jaringan syaraf tiruan dan robotika.

            Penelitian dalam AI menyangkut pembuatan mesin untuk mengotomatisasikan tugas-tugas yang membutuhkan perilaku cerdas. Termasuk contohnya adalah pengendalian, perencanaan dan penjadwalan, kemampuan untuk menjawab diagnosa dan pertanyaan pelanggan, serta pengenalan tulisan tangan, suara dan wajah. Hal-hal seperti itu telah menjadi disiplin ilmu tersendiri, yang memusatkan perhatian pada penyediaan solusi masalah kehidupan yang nyata. Sistem AI sekarang ini sering digunakan dalam bidang ekonomi, obat-obatan, teknik dan militer, seperti yang telah dibangun dalam beberapa aplikasi perangkat lunak komputer rumah dan video game.


Pengertian Game
            Game adalah permainan komputer yang dibuat dengan teknik dan metode animasi. Permainan game merupakan bidang AI yang sangat populer berupa permainan antara manusia melawan mesin yang mempunyai intelektual untuk berpikir. Komputer dapat bereaksi dan menjawab tindakan-tindakan yang diberikan oleh lawan mainnya.

            Salah satu komputer yang ditanamkan AI untuk game bernama Deep Blue. Deep Blue adalah sebuah komputer catur buatan IBM pertama yang memenangkan sebuah permainan catur melawan seorang juara dunia (Garry Kasparov) dalam waktu standar sebuah turnamen catur. Kemenangan pertamanya (dalam pertandingan atau babak pertama) terjadi pada 10 Februari 1996, dan merupakan permainan yang sangat terkenal.

            Kini telah banyak berkembang game AI yang semakin menarik, interaktif, dan dengan grafis yang sangat bagus. Ditambah dengan kemajuan teknologi jaringan komputer yang semakin cepat, sudah banyak terdapat game-game AI yang berbasiskan online. Tidak sedikit orang yang tertarik dengan game saat ini. Mereka memainkan game untuk mengisi kekosongan waktu mereka atau pun melatih skill mereka dalam berpikir.

Sejarah Artificial Intelligence dalam Game
            Pada tahun 1769, dataran Eropa dikejutkan dengan suatu permainan catur yang dapat menjawab langkah-langkah permainan catur yang belum ditentukan terlebih dahulu. Mesin ini disebut dengan Maelzel Chess Automation dan dibuat oleh Wolfgang Von Kempelan (1734-1804) dari Hungaria. Akan tetapi mesin ini akhirnya terbakar pada tahun 1854 di Philadelphia Amerika Serikat.banyak orang tidak percaya akan kemampuan mesin tersebut. Dan seorang penulis dari Amerika Serikat, Edgar Allan Poe (1809-1849) menulis sanggahan terhadap mesin tersebut, dia dan kawan-kawannya ternyata benar, bahwa mesin tersebut adalah tipuan, dan kenyataannya bukanlah aoutomation, tetapi merupakan konstruksi yang sangat baik yang dikontrol oleh seorang pemain catur handal yang bersembunyi di dalamnya.

            Usaha untuk membuat konstruksi mesin permainan terus dilanjutkan pada tahun 1914, dan mesin yang pertama kali didemonstrasikan adalah mesin permainan catur. Penemu mesin ini adalah Leonardo Torres Y Quevedo, direktur dari Laboratorio de Automatica di Madrid, Spanyol. Beberapa tahun kemudian, ide permainan catur dikembangkan dan diterapkan di komputer oleh Arthur L. Samuel dari IBM dan dikembangkan lebih lanjut oleh Claude Shannon.
Manusia bisa menjadi pandai dalam menyelesaikan segala permasalahan di dunia ini karena manusia mempunyai pengetahuan dan pengalaman. Pengetahuan diperoleh dari cara mempelajarinya. Semakin banyak bekal pengetahuan yang dimiliki oleh seseorang tentu saja diharapkan akan lebih mampu dalam menyelesaikan permasalahan. Namun bekal pengetahuan saja tidak cukup, manusia juga diberi akal untuk melakukan penalaran, mengambil kesimpulan berdasarkan pengetahuan dan pengalaman yang mereka miliki. Tanpa memiliki kemampuan untuk menalar dengan baik, manusia dengan segudang pengalaman dan pengetahuan tidak akan dapat menyelesaikan masalah dengan baik.

A.     Decision Making
            Decision Making adalah serangkaian algoritma yang dirancang dengan memasukan beberapa kemungkinan langkah yang bisa diambil oleh suatu aplikasi, Pada game ini decision makingmemberikan kemampuan suatu karakter untuk menentukan langkah apa yang akan diambil. Decision making dilakukan dengan cara menentukan satu pilihan dari list yang sudah dibuat pada algoritma yang dirancang. Decision Making dibagi menjadi 3, yaitu :

Decision Tree
            Pohon Keputusan (Decision Tree) merupakan metode klasifikasi dan prediksi yang sangat kuat dan terkenal. Metode pohon keputusan mengubah fakta yang sangat besar menjadi pohon keputusan yang merepresentasikan aturan. Aturan dapat dengan mudah dipahami dengan bahasa alami. Aturan ini juga dapat diekspresikan dalam bentuk bahasa basis data seperti SQL untuk mencari record pada kategori tertentu. Pohon keputusan juga berguna untuk mengeksplorasi data, menemukan hubungan tersembunyi antara sejumlah calon variabel input dengan sebuah variabel target. Karena pohon keputusan memadukan antara eksplorasi data dan pemodelan, pohon keputusan ini sangat bagus sebagai langkah awal dalam proses pemodelan bahkan ketika dijadikan sebagai model akhir dari beberapa teknik lain (J R Quinlan, 1993).

Kelebihan dari metode pohon keputusan adalah:
1.      Daerah pengambilan keputusan yang sebelumnya kompleks dan sangat global, dapat diubah menjadi lebih simpel dan spesifik
2.      Eliminasi perhitungan-perhitungan yang tidak diperlukan, karena ketika menggunakan metode pohon keputusan maka sampel diuji hanya berdasarkan kriteria atau kelas tertentu
3.      Fleksibel untuk memilih fitur dari node internal yang berbeda, fitur yang terpilih akan membedakan suatu kriteria dibandingkan kriteria yang lain dalam node yang sama. Kefleksibelan metode pohon keputusan ini meningkatkan kualitas keputusan yang dihasilkan jika dibandingkan ketika menggunakan metode penghitungan satu tahap yang lebih konvensional.

Kekurangan pada pohon keputusan adalah:
1.      Terjadi overlapping terutama ketika kelas-kelas dan kriteria yang digunakan jumlahnya sangat banyak. Hal tersebut juga dapat menyebabkan meningkatnya waktu pengambilan keputusan dan jumlah memori yang diperlukan
2.      Pengakumulasian jumlah kesalahan dari setiap tingkat dalam sebuah pohon keputusan yang besar
3.      Kesulitan dalam mendesain pohon keputusan yang optimal

State Machine
            Finite State Machines (FSM) adalah sebuah metodologi perancangan sistem kontrol yang menggambarkan tingkah laku atau prinsip kerja sistem dengan menggunakan tiga hal berikut: State (Keadaan), Event (kejadian) dan action (aksi). Pada satu saat dalam periode waktu yang cukup signifikan, sistem akan berada pada salah satu state yang aktif. Sistem dapat beralih atau bertransisi menuju state lain jika mendapatkan masukan atau event tertentu, baik yang berasal dari perangkat luar atau komponen dalam sistemnya itu sendiri (misal interupsi timer). Transisi keadaan ini umumnya juga disertai oleh aksi yang dilakukan oleh sistem ketika menanggapi masukan yang terjadi. Aksi yang dilakukan tersebut dapat berupa aksi yang sederhana atau melibatkan rangkaian proses yang relative kompleks.

Rule System
Rule Based System merupakan metode pengambilan keputusan berdasarkan pada aturan-aturan tertentu yang telah ditetapkan. RBS dapat diterapkan pada agen virtual dalam bentuk kecerdasan buatan sehingga dapat melakukan tindakan tertentu. Tindakan tersebut direpresentasikan oleh set aturan yaitu penyebab tindakan itu terjadi, proses tindakan dan hasil dari tindakan tersebut.

B.      Path Finding
            Metode pathfinding paling mudah ditemui pada game-game bertipe strategi dimana kita menunjuk satu tokoh untuk digerakkan ke lokasi tertentu dengan mengklik lokasi yang hendak dituju. Si tokoh akan segera bergerak ke arah yang ditentukan, dan secara “cerdas” dapat menemukan jalur terpendek ataupun menghindari dari rintangan-rintangan yang ada. Salah satu algoritma Pathfinding yang cukup umum dan yang paling banyak digunakan utnuk mencari jarak terpendek secara efisien adalah A*Searching (baca: A star).

            Algoritma A*Searching adalah mendefinisikan area pencarian menjadi sekumpulan node-node (tiles). Titik awal dan titik akhir ditentukan terlebih dulu untuk mulai penelusuran pada tiap-tiap node yang memungkinkan untuk ditelusuri. Dari sini, akan diperoleh skor yang menunjukkan besarnya biaya untuk menempuh jalur yang ditemukan, ditambah dengan nilai heuristik yang merupakan nilai biaya estimasi dari node yang ada menuju tujuan akhir. Iterasi akan dilakukan hingga akhirnya mencapai target yang dituju.

            Algoritma Dijkstra, (dinamai menurut penemunya, seorang ilmuwan komputer, Edsger Dijkstra), adalah sebuah algoritma rakus (greedy algorithm) yang dipakai dalam memecahkan permasalahan jarak terpendek (shortest path problem) untuk sebuah graf berarah (directed graph) dengan bobot-bobot sisi (edge weights) yang bernilai tak-negatif.


Sumber :
http://kecerdasanbuatan-gaming.blogspot.co.id/p/blog-page.html
https://setiyanugroho.wordpress.com/2011/04/12/kecerdasan-buatan-dalam-game/
http://harrysetyobudi.blogspot.co.id/2016/03/pengantar-teknologi-game.html
https://aswendy.wordpress.com/2015/04/23/artificial-intelligent-pada-game-decision-making/


0 komentar:

Posting Komentar